Bathymetric stripping corrections to gravity gradient components
نویسندگان
چکیده
To allow for geophysical interpretation of observed gravity gradients, several corrections must be applied. In this article expressions for gravimetric forward modeling of bathymetric (ocean density contrast) stripping corrections to GOCE gravity gradient observables are evaluated numerically. The generic expression for the bathymetric gravitational potential utilizes a depth-dependent seawater density distribution model. The expressions are defined in their spectral representation by means of the bathymetric spherical functions which describe the global geometry of the ocean bottom relief. Numerical examples are given for the bathymetric stripping corrections to selected gravity field parameters computed with a spectral resolution complete to degree 360 of spherical harmonics. All computations are realized globally on the 1 arc-deg geographical grid at the mean satellite elevation of 250 km. The results reveal that the bathymetric stripping corrections to gravity gradients globally vary within ±5 × 10−9 s−2. Extreme values apply mainly along the continental margins where the largest spatial bathymetric gravitation signal variations occur.
منابع مشابه
New Improvement in Interpretation of Gravity Gradient Tensor Data Using Eigenvalues and Invariants: An Application to Blatchford Lake, Northern Canada
Recently, interpretation of causative sources using components of the gravity gradient tensor (GGT) has had a rapid progress. Assuming N as the structural index, components of the gravity vector and gravity gradient tensor have a homogeneity degree of -N and - (N+1), respectively. In this paper, it is shown that the eigenvalues, the first and the second rotational invariants of the GGT (I1 and ...
متن کاملLocation and dimensionality estimation of geological bodies using eigenvectors of "Computed Gravity Gradient Tensor"
One of the methodologies employed in gravimetry exploration is eigenvector analysis of Gravity Gradient Tensor (GGT) which yields a solution including an estimation of a causative body’s Center of Mass (COM), dimensionality and strike direction. The eigenvectors of GGT give very rewarding clues about COM and strike direction. Additionally, the relationships between its components provide a quan...
متن کاملThe phase transition of corrected black hole with f(R) gravity
In this letter, we consider static black hole in f(R) gravity.We take advantage from corrected entropy and temperature and investigate such black hole. Finally, we study the $ P - V $ critically and phase transition of corrected black hole with respect to entropy and temperature. Here also, we obtain the heat capacity for the static black hole in $ f(R) $ gravity. This calculation help us...
متن کاملPractical aspects of terrain correction in airborne gravity gradiometry
We study the practical aspects of performing terrain corrections in airborne/seaborne gravity gradient surveys in terms of necessary spatial extents and required resolution of digital elevation models. We develop a new and practical method for performing terrain corrections through an extension of Parker’s 1972 method for calculating potential anomalies in the Fourier domain. We then study and ...
متن کاملNumerical Simulation of Effect of Drain Pipe in Uplift Force and Exit Hydraulic Gradient in Gravity Dams
In this study, the effects of diameter and location of drain pipe in uplift force and exit hydraulic gradient in the foundation of gravity dams are investigated. For this purpose, a numerical model of gravity dam foundation is simulated using finite elements method. The results indicate that drain pipe under the gravity dam reduces the uplift force and exit hydraulic gradient. Location of the d...
متن کامل